Progress on Multiloop Scattering Amplitudes

new perspectives on Feynman Integral Calculus

Pierpaolo Mastrolia

Max Planck Institute for Physics, Munich Physics and Astronomy Dept., University of Padova

Loop Fest XIII CUNY City Tech, Brooklyn 20 June 2014

in collaboration with: Edoardo Mirabella, Giovanni Ossola, Tiziano Peraro, Uli Schubert

Motivation

- Identify a unique Mathematical framework for any Multi-Loop Amplitude
- Simplify the calculations in High-Energy Physics
- Discover hidden properties of Feynman Amplitudes

Path

- Amplitudes Decomposition
- Multiloop Integrand Reduction and Multivariate Polynomial Division
- Integrand Reduction and the minimal set of Master Integrals
- Differential Equations for Feynman Integrals: Magnus Exponential
- Conclusions

Very successful for many-leg one-loop amplitudes

Ossola, Papadopoulos, Pittau

$$N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i$$

$$+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i$$

$$+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i$$

$$+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i$$

$$+ \tilde{P}(q) \prod_{i=1}^{m-1} D_i.$$

Very successful for many-leg one-loop amplitudes

Ossola, Papadopoulos, Pittau

Integral Identities (IBP-id's, LI-id's,...)

Chetyrkin, Tkachov; Laporta Gehrmann, Remiddi

Very successful for many-loop up to 4-legs amplitudes

$$\int \frac{d^D k}{i\pi^{D/2}} \frac{\partial}{\partial k^{\mu}} v^{\mu} f(k, p_i) = 0. \qquad 2p_i^{\mu} p_j^{\nu} \left(\sum_n p_n^{[\mu} \frac{\partial}{\partial p_n^{\nu]}} \right) I = 0$$

Very successful for many-leg one-loop amplitudes

Ossola, Papadopoulos, Pittau

Integral Identities (IBP-id's, LI-id's,...)

Chetyrkin, Tkachov; Laporta Gehrmann, Remiddi

Very successful for many-loop up to 4-legs amplitudes

Can we combine their advantages?

>>> Zhang's talk

Very successful for many-leg one-loop amplitudes

Ossola, Papadopoulos, Pittau

Integral Identities (IBP-id's, LI-id's,...)

Chetyrkin, Tkachov; Laporta

Gehrmann, Remiddi

Very successful for many-loop up to 4-legs amplitudes

Can we combine their advantages?

New ideas to devise an all-order Int'nd Red'n Algorithm

Driving Principles Generic Properties of Feynman Amplitudes:

- Unitarity & Factorization
- **₽**Loop-momentum-shift invariance

Amplitudes Decomposition:

the algebraic way

$$a = axi + ayj + azk$$

Basis: {i j k}

Scalar product/Projection: to extract the components

$$\mathbf{a}_{x} = \mathbf{a}.\mathbf{i}$$

$$\mathbf{a}_{y} = \mathbf{a}_{y}$$

$$az = a.k$$

Projections :: On-Shell Cut-Conditions

vanishing denominators

$$\frac{1}{n^2 - m^2 - i0} \to \delta(p^2 - m^2)$$

Multi-Loop Integrand-Reduction by Polynomial Division

Ossola & P.M. (2011)

Badger, Frellesvig, Zhang (2011)

Zhang (2012)

Mirabella, Ossola, Peraro, & P.M (2012)

- Problem: what is the form of the residues?
 - "find the right variables encoding the cut-structure"

variables

- ISP's = Irreducible Scalar Products:
 - q-components which can variate under cut-conditions
 - spurious: vanishing upon integration
 - non-spurious: non-vanishing upon integration \Rightarrow MI's

Ossola & P.M. (2011)

A simple idea

Remainder Theorem

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} , \qquad deg(r) < deg(g)$$

$$g(x) = (x - x_0): \Rightarrow \frac{f(x)}{(x - x_0)} = q(x) + \frac{r_0}{(x - x_0)}, \quad r_0 = f(x_0)$$

Multivariate Polynomial Division

Zhang (2012); Mirabella, Ossola, Peraro, & P.M. (2012)

$$\mathcal{J}_{i_1\cdots i_n} = \langle D_{i_1}, \cdots, D_{i_n} \rangle \equiv \left\{ \sum_{\kappa=1}^n h_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}) : h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}] \right\}$$

$$\mathcal{G}_{i_1\cdots i_n} = \{g_1(\mathbf{z}), \dots, g_m(\mathbf{z})\}$$

$$\mathcal{J}_{i_1...i_n} = \langle g_1, \dots, g_m \rangle \equiv \left\{ \sum_{\kappa=1}^m \tilde{h}_{\kappa}(\mathbf{z}) g_{\kappa}(\mathbf{z}) : \tilde{h}_{\kappa}(\mathbf{z}) \in P[\mathbf{z}] \right\}$$

$$D_{i_1} = \ldots = D_{i_n} = 0 \quad \Leftrightarrow \quad g_1 = \ldots = g_m = 0$$

Multivariate Polynomial Division

Zhang (2012); Mirabella, Ossola, Peraro, & P.M. (2012)

$$\mathcal{J}_{i_1\cdots i_n} = \langle D_{i_1}, \cdots, D_{i_n} \rangle \equiv \left\{ \sum_{\kappa=1}^n h_{\kappa}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}) : h_{\kappa}(\mathbf{z}) \in P[\mathbf{z}] \right\}$$

Groebner Basis

$$\mathcal{G}_{i_1\cdots i_n} = \{g_1(\mathbf{z}), \dots, g_m(\mathbf{z})\}$$

$$\mathcal{J}_{i_1...i_n} = \langle g_1, \dots, g_m \rangle \equiv \left\{ \sum_{\kappa=1}^m \tilde{h}_{\kappa}(\mathbf{z}) g_{\kappa}(\mathbf{z}) : \tilde{h}_{\kappa}(\mathbf{z}) \in P[\mathbf{z}] \right\}$$

$$D_{i_1} = \ldots = D_{i_n} = 0 \quad \Leftrightarrow \quad g_1 = \ldots = g_m = 0$$

$$\mathcal{N}_{i_1\cdots i_n}(\mathbf{z}) = \Gamma_{i_1\cdots i_n} + \Delta_{i_1\cdots i_n}(\mathbf{z}) ,$$

$$\Delta_{i_1\cdots i_n}(\mathbf{z})$$

$$\Gamma_{i_1 \cdots i_n} = \sum_{i=1}^m \mathcal{Q}_i(\mathbf{z}) g_i(\mathbf{z}) \quad \text{belongs to the ideal } \mathcal{J}_{i_1 \cdots i_n},$$

$$= \sum_{\kappa=1}^n \mathcal{N}_{i_1 \cdots i_{\kappa-1} i_{\kappa+1} \cdots i_n}(\mathbf{z}) D_{i_{\kappa}}(\mathbf{z}) .$$

Multi-Loop Integrand Recurrence

Mirabella, Ossola, Peraro, & P.M. (2012)

$$\frac{\mathcal{N}_{i_1...i_n}}{D_{i_1}\cdots D_{i_n}} = \sum_{\kappa=1}^n \frac{\mathcal{N}_{i_1...i_{\kappa-1}i_{\kappa+1}...i_n} D_{i_{\kappa}}}{D_{i_1}\cdots D_{i_{\kappa-1}}D_{i_{\kappa}}D_{i_{\kappa+1}}\cdots D_{i_n}} + \frac{\Delta_{i_1...i_n}}{D_{i_1}\cdots D_{i_n}}$$

Multi-Loop Integrand Recurrence

Mirabella, Ossola, Peraro, & P.M. (2012)

$$\frac{\mathcal{N}_{i_1...i_n}}{D_{i_1}\cdots D_{i_n}} = \sum_{\kappa=1}^{n} \frac{\mathcal{N}_{i_1...i_{\kappa-1}i_{\kappa+1}...i_n} \mathcal{D}'_{i_{\kappa}}}{D_{i_1}\cdots D_{i_{\kappa-1}}\mathcal{D}'_{i_{\kappa}}D_{i_{\kappa+1}}\cdots D_{i_n}} + \frac{\Delta_{i_1...i_n}}{D_{i_1}\cdots D_{i_n}}$$

Multi-Loop Integrand Recurrence

Mirabella, Ossola, Peraro, & P.M. (2013)

remainder = residue

D-reg

Higher powers of denominators

Arbitary kinematics

$$\mathcal{I}_{\underbrace{i_1 \cdots i_1 \cdots i_n}_{a_1} = \sum_{k=1}^n \mathcal{I}_{\underbrace{i_1 \cdots i_1}_{a_1} \cdots \underbrace{i_k \cdots i_k \cdots i_n}_{a_k-1} + \frac{\Delta_{i_1 \cdots i_1 \cdots i_n \cdots i_n}}{D^{a_1}_{i_1} \cdots D^{a_k}_{i_n}},$$
 n-denominator integrand
$$(\text{n-1})\text{-denominator integrand}$$

Multi-Loop Integrand Decomposition

Multi-(particle)-pole decomposition

$$\mathcal{I}_{i_1\cdots i_n} = \frac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}D_{i_2}\cdots D_{i_n}}$$

$$\mathcal{I}_{i_{1}\cdots i_{n}} = \sum_{1=i_{1}<< i_{\max}}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}}} + \sum_{1=i_{1}<< i_{\max}-1}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-1}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-1}}$$

$$+ \sum_{1=i_{1}<< i_{\max}-2}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-2}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-2}} + \cdots + \sum_{1=i_{1}< i_{2}}^{n} \frac{\Delta_{i_{1}i_{2}}}{D_{i_{1}}D_{i_{2}}} + \sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}} + Q_{\emptyset}$$

Fit-on-cuts...

Knowing the parametric form of residues is *mandatory*!!!

$$\mathcal{I}_{i_{1}\cdots i_{n}} = \sum_{1=i_{1}<< i_{\max}}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}}} + \sum_{1=i_{1}<< i_{\max}-1}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-1}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-1}} + \sum_{1=i_{1}<< i_{2}}^{n} \frac{\Delta_{i_{1}i_{2}\dots i_{\max}-1}}{D_{i_{1}}D_{i_{2}}\cdots D_{i_{\max}-2}} + \cdots + \sum_{1=i_{1}< i_{2}}^{n} \frac{\Delta_{i_{1}i_{2}}}{D_{i_{1}}D_{i_{2}}} + \sum_{1=i_{1}}^{n} \frac{\Delta_{i_{1}}}{D_{i_{1}}} + Q_{\emptyset}$$

Use your favorite generator (how about **GoSam**?), and **sample** I(q's) as many time as the number of unknown coefficients

- Parametric form of the residues is process independent.
- Actual values of the coefficients is process dependent.

...Divide and Conquer

Mirabella, Ossola, Peraro, & P.M. (2013)

$$\mathcal{I}_{\underbrace{p_n^{a_1}}_{n_n}} \underbrace{\mathcal{I}_{\underbrace{p_n^{a_1}}_{n_n}}}_{\underbrace{p_n^{a_1}}_{n_n}} \underbrace{\ell}_{\underbrace{p_n^{a_1}}_{n_n}} \underbrace{\ell}_{\underbrace{p_n^{a_1}}_{n_n^{a_1}}} \underbrace{\ell}_{\underbrace{p_n^{a_1}}_{n_n^{a_1}}} \underbrace{\ell}_{\underbrace{p_n^{a_1}}_{n_n^{a_1}} \underbrace{\ell}_{\underbrace{p_n^{a_1}}_{n_n^{a_1}}} \underbrace{\ell}_{\underbrace{p_n^{a_1}}_{n$$

just apply the *polynomial division* to the integrand you want to reduce: analytic/algebraic reduction

One-Loop Integrand-Reduction

One-Loop Integrand Decomposition

Choice of 4-dimensional basis for an m-point residue

$$e_1^2 = e_2^2 = 0$$
, $e_1 \cdot e_2 = 1$, $e_3^2 = e_4^2 = \delta_{m4}$, $e_3 \cdot e_4 = -(1 - \delta_{m4})$

• Coordinates: $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5) \equiv (x_1, x_2, x_3, x_4, \mu^2)$

$$q_{4-\text{dim}}^{\mu} = -p_{i_1}^{\mu} + x_1 e_1^{\mu} + x_2 e_2^{\mu} + x_3 e_3^{\mu} + x_4 e_4^{\mu}, \qquad q^2 = q_{4-\text{dim}}^2 - \mu^2$$

Generic numerator

$$\mathcal{N}_{i_1 \cdots i_m} = \sum_{j_1, \dots, j_5} \alpha_{\vec{j}} \, z_1^{j_1} \, z_2^{j_2} \, z_3^{j_3} \, z_4^{j_4} \, z_5^{j_5}, \qquad (j_1 \dots j_5) \quad \text{such that} \quad \operatorname{rank}(\mathcal{N}_{i_1 \cdots i_m}) \leq m$$

Residues

$$\Delta_{i_1 i_2 i_3 i_4 i_5} = c_0$$

$$\Delta_{i_1 i_2 i_3 i_4} = c_0 + c_1 x_4 + \mu^2 (c_2 + c_3 x_4 + \mu^2 c_4)$$

$$\Delta_{i_1 i_2 i_3} = c_0 + c_1 x_3 + c_2 x_3^2 + c_3 x_3^3 + c_4 x_4 + c_5 x_4^2 + c_6 x_4^3 + \mu^2 (c_7 + c_8 x_3 + c_9 x_4)$$

$$\Delta_{i_1 i_2} = c_0 + c_1 x_2 + c_2 x_3 + c_3 x_4 + c_4 x_2^2 + c_5 x_3^2 + c_6 x_4^2 + c_7 x_2 x_3 + c_9 x_2 x_4 + c_9 \mu^2$$

$$\Delta_{i_1} = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$$

One-Loop Integrand Decomposition

$$\mathcal{A}_n^{\text{one-loop}} = \int d^{-2\epsilon} \mu \int d^4 q \ A_n(q, \mu^2) \ , \qquad A_n(q, \mu^2) \equiv \frac{\mathcal{N}_n(q, \mu^2)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{n-1}} \qquad \bar{D}_i = (\bar{q} + p_i)^2 - m_i^2 = (q + p_i)^2 - m_i^2 - \mu^2$$

We use a bar to denote objects living in $d = 4 - 2\epsilon$ dimensions

$$\bar{q} = q + \mu, \text{ with } \bar{q}^2 = q^2 - \mu^2.$$

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{3,7} + c_{2,0} + c_{2,9} +$$

The GoSam Project 2.0

Cullen van Deurzen Greiner Heinrich Luisoni Mirabella Ossola Peraro Reichel Schlenk von Soden-Fraunhofen Tramontano *P.M.*

MC Interfaces

Beyond SM

EW Physics

Top Physics

Diphoton and jets

Higgs (+ tops) & Jets

>>> Heinrich's talk

>>> Peraro's talk

Int'nd Red @ Higher-Loop: it works!

Badger, Frellesvig, Zhang Mirabella, Ossola, Peraro, & **P.M.**

issue:

independent monomials

are not a minimal set

Int'nd Red @ Higher-Loop: it works!

Badger, Frellesvig, Zhang Mirabella, Ossola, Peraro, & *P.M.*

issue:

independent monomials

are not a minimal set

...but this is also the case at 1-loop

One-Loop Integrand Decomposition

$$\mathcal{A}_n^{\text{one-loop}} = \int d^{-2\epsilon} \mu \int d^4 q \ A_n(q, \mu^2) \ , \qquad A_n(q, \mu^2) \equiv \frac{\mathcal{N}_n(q, \mu^2)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{n-1}} \qquad \bar{D}_i = (\bar{q} + p_i)^2 - m_i^2 = (q + p_i)^2 - m_i^2 - \mu^2$$

We use a bar to denote objects living in $d = 4 - 2\epsilon$ dimensions

$$\bar{q} = q + \mu$$
, with $\bar{q}^2 = q^2 - \mu^2$.

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{3,7} + c_{2,0} + c_{2,9} +$$

One-Loop Integrand Decomposition

$$\mathcal{A}_n^{\text{one-loop}} = \int d^{-2\epsilon} \mu \int d^4 q \ A_n(q, \mu^2) \ , \qquad A_n(q, \mu^2) \equiv \frac{\mathcal{N}_n(q, \mu^2)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{n-1}} \qquad \bar{D}_i = (\bar{q} + p_i)^2 - m_i^2 = (q + p_i)^2 - m_i^2 - \mu^2$$

We use a bar to denote objects living in $d = 4 - 2\epsilon$ dimensions

$$\bar{q} = q + \mu, \text{ with } \bar{q}^2 = q^2 - \mu^2.$$

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{2,0} + c_{2,9} + c_{2,9} + c_{1,0}$$

Ex: QED-like kinematic

$$\frac{|BP|}{-}$$
 $+$ Q

Solution: Integration-by-Parts Id's @ integrand level

Ossola, Peraro, & P.M.

Accessing the reducibility power of IBP-id's within the integrand

Let's begin with 1-Loop

1-Loop:

Dimensional-Recurrence from IBP-id's

Tarasov; Bern-Dixon-Kosower; Duplancic-Nizic; Denner-Dittmaier; Binoth-Guillet-Heinrich; ...; Lee;

$$I_0^N(D; \{\nu_i\}) \equiv (\mu^2)^{2-D/2} \int \frac{\mathrm{d}^D l}{(2\pi)^D} \frac{1}{A_1^{\nu_1} A_2^{\nu_2} \cdots A_N^{\nu_N}}$$

$$0 \equiv \int \frac{\mathrm{d}^D l}{(2\pi)^D} \frac{\partial}{\partial l^{\mu}} \left(\frac{z_0 l^{\mu} + \sum_{i=1}^N z_i r_i^{\mu}}{A_1^{\nu_1} \cdots A_N^{\nu_N}} \right)$$

$$C I_0^N(D-2; \{\nu_k\}) = \sum_{i=1}^N z_i I_0^N(D-2; \{\nu_k - \delta_{ki}\}) + (4\pi\mu^2)(D-1 - \sum_{j=1}^N \nu_j) z_0 I_0^N(D; \{\nu_k\}),$$

Can we understand/obtain it @ integrand level?

1-Loop: Shifted-D Integrals

$$\frac{1}{2}$$
D = 4 - 2e

Loop Momentum Decomposition:

$$\bar{q} = q + \mu \; , \qquad \bar{q}^2 = q^2 - \mu^2 \; ,$$

$$\int d^D \bar{q} \equiv \int d^{-2\epsilon} \mu \int d^4 q = \int d\Omega_{-1-2\epsilon} \int_0^\infty d\mu^2 (\mu^2)^{-1-\epsilon} , \qquad \Omega_n \equiv \frac{2\pi^{\frac{n+1}{2}}}{\Gamma(\frac{n+1}{2})}$$

$$I_n^D[f(q,\mu,p_i)] \equiv \int d^D q \frac{f(q,\mu,p_i)}{D_1 \cdots D_n}$$

Mahlon; Bern-Morgan

 \bar{q} in *D*-dimensions q in 4-dimensions μ in (-2ϵ) -dimensions

Dimension-raising @ Int'nd level

• From $D \to D + 2$: integrand generation of $I_n^{6-2\epsilon}$:

$$I_n^{4-2\epsilon}[\mu^2] = (-\epsilon)I_n^{6-2\epsilon} , \qquad \frac{1}{(v_{\perp,1} \cdot v_{\perp,2})} I_n^{4-2\epsilon}[(v_{\perp,1} \cdot q)(v_{\perp,2} \cdot q)] = -\frac{1}{2} I_n^{6-2\epsilon} \qquad (v_{\perp,i} \cdot p_j = 0)$$

(tadpole)
$$I_1^{4-2\epsilon}[q^2] = -2I_1^{6-2\epsilon}$$

1-Loop: Dimensional-Recurrence from Integrand Reduction

$$I_n^{D=6-2\epsilon} = \frac{1}{(n-5+2\epsilon)c_0} \left[2I_n^{D=4-2\epsilon} - \sum_{i=1}^n c_i I_{n-1}^{(i),D=4-2\epsilon} \right]$$

Proposition.

- @ 1-Loop: Dimensional-Recurrence for I_n^D
 - generated from the relation between μ^2 and $\frac{(v_{\perp,1}\cdot q)(v_{\perp,2}\cdot q)}{(v_{\perp,1}\cdot v_{\perp,2})}$ and D_i 's

...Divide and Conquer

Mirabella, Ossola, Peraro, & P.M. (2013)

$$\mathcal{I}_{i_1\cdots i_1\cdots i_n\cdots i_n} = \sum_{k=1}^n \mathcal{I}_{i_1\cdots i_1\cdots i_n\cdots i_n}^{p_1^{a_1}} = \sum_{k=1}^n \mathcal{I}_{i_1\cdots i_1\cdots i_n\cdots i_n} + \frac{\Delta_{i_1\cdots i_1\cdots i_n\cdots i_n}}{D_{i_1}^{a_1}\cdots D_{i_n}^{a_k}},$$
 remainder = residue
$$\mathcal{I}_{i_1\cdots i_1\cdots i_n\cdots i_n} = \sum_{k=1}^n \mathcal{I}_{i_1\cdots i_1\cdots i_1\cdots i_k\cdots i_k\cdots i_n\cdots i_n} + \frac{\Delta_{i_1\cdots i_1\cdots i_n\cdots i_n}}{D_{i_1}^{a_1}\cdots D_{i_n}^{a_k}},$$
 n-denominator integrand
$$(n-1)\text{-denominator integrand}$$

just apply the *polynomial division* to the integrand you want to reduce: analytic/algebraic reduction

Pentagons

We start with the 5-point one-loop integrand

$$\mathcal{I}_{01234} = \frac{\mu^2}{D_0 D_1 D_2 D_3 D_4}$$

Integrand decomposition

whose decomposition reads

$$\mu^{2} = c_{0}^{(01234)}$$

$$+ \left(c_{0}^{(0123)} + c_{1}^{(0123)} (q \cdot v_{\perp}^{(0123)}) \right) D_{4}$$

$$+ \left(c_{0}^{(0124)} + c_{1}^{(0124)} (q \cdot v_{\perp}^{(0124)}) \right) D_{3}$$

$$+ \left(c_{0}^{(0134)} + c_{1}^{(0134)} (q \cdot v_{\perp}^{(0134)}) \right) D_{2}$$

$$+ \left(c_{0}^{(0234)} + c_{1}^{(0234)} (q \cdot v_{\perp}^{(0234)}) \right) D_{1}$$

$$+ \left(c_{0}^{(1234)} + c_{1}^{(1234)} ((q + p_{1}) \cdot v_{\perp}^{(1234)}) \right) D_{0}$$

Integration

$$\mathcal{I}_{01234}[\mu^2] = -\epsilon \, \mathcal{I}_{01234}^{6-2\epsilon} = c_0^{01234} \mathcal{I}_{01234} + c_0^{(0123)} \, \mathcal{I}_{0123} + c_0^{(0124)} \, \mathcal{I}_{0124} + c_0^{(0134)} \, \mathcal{I}_{0134} + c_0^{(0234)} \, \mathcal{I}_{0234} + c_0^{(1234)} \, \mathcal{I}_{1234}.$$

Boxes

$$\mathcal{I}_{0123} = \frac{1}{v_{\perp}^2} \, \frac{(q \cdot v_{\perp})^2}{D_0 D_1 D_2 D_3},$$

Integrand decomposition

$$\frac{(q \cdot v_{\perp})^{2}}{v_{\perp}^{2}} = c_{0}^{(0123)} + \mu^{2}
+ \left(c_{0}^{(0123)} + c_{1}^{(012)}(q \cdot e_{3}^{(012)}) + c_{4}^{(012)}(q \cdot e_{4}^{(012)})\right) D_{3}
+ \left(c_{0}^{(013)} + c_{1}^{(013)}(q \cdot e_{3}^{(013)}) + c_{4}^{(013)}(q \cdot e_{4}^{(013)})\right) D_{2}
+ \left(c_{0}^{(023)} + c_{1}^{(023)}(q \cdot e_{3}^{(023)}) + c_{4}^{(023)}(q \cdot e_{4}^{(023)})\right) D_{1}
+ \left(c_{0}^{(123)} + c_{1}^{(123)}(q \cdot e_{3}^{(123)}) + c_{4}^{(123)}(q \cdot e_{4}^{(123)})\right) D_{0}.$$

Integration

$$\frac{1}{v_{\perp}^2} \mathcal{I}_n[(q.v_{\perp})^2] - \mathcal{I}[\mu^2] = \frac{1}{2} (-1 + 2\epsilon) \, \mathcal{I}_{0123}^{6-2\epsilon} = c_0^{(0123)} \, \mathcal{I}_{0123} + \sum_{ijk} c_0^{(ijk)} \mathcal{I}_{ijk}.$$

Triangles

$$\mathcal{I}_{012} = \frac{1}{(e_3 \cdot e_4)} \frac{(q \cdot e_3)(q \cdot e_4)}{D_0 D_1 D_2},$$

Integrand decomposition

$$\frac{(q \cdot e_3)(q \cdot e_4)}{(e_3 \cdot e_4)} = c_0^{(0123)} + \frac{1}{2}\mu^2 + \text{scalar bubbles} + \text{linear bubbles} + \text{tadpoles}.$$

$$= c_0^{(0123)} + \frac{1}{2}\mu^2 + \text{scalar bubbles}.$$

$$\frac{1}{4} \left(-2 + 2 \epsilon \right) \mathcal{I}_{0123}^{d=6-2\epsilon} = c_0^{(0123)} \mathcal{I}_{0123} + \sum_{ij} c_{ij} \mathcal{I}_{ij}.$$

Bubbles

$$\mathcal{I}_{01} = \frac{1}{(e_3 \cdot e_4)} \frac{(q \cdot e_3)(q \cdot e_4)}{D_0 D_1},$$

Integrand decomposition

$$\frac{(q \cdot e_3)(q \cdot e_4)}{(e_3 \cdot e_4)} = \frac{1}{2}\mu^2 + \text{scalar, linear and quadratic bubble} + \text{tadpoles.}$$

$$= \frac{1}{3}\mu^2 + \text{scalar bubble} + \text{tadpoles.}$$

Integration

$$\frac{1}{6}(-3+2\epsilon)\mathcal{I}_{01}^{6-2\epsilon} = c_0 \,\mathcal{I}_{01} + \sum_i c_i \,\mathcal{I}_i$$

Tadpoles

Integration

$$\frac{1}{e_3 \cdot e_4} \mathcal{I}_0[(q \cdot e_3)(q \cdot e_4)] = \frac{1}{4} \mathcal{I}[\mu^2] + \frac{1}{4} m_0^2 \mathcal{I}_0$$

$$\frac{1}{8}(-4+2\,\epsilon)\,\mathcal{I}_0^{d=6-2\epsilon} = \frac{1}{4}\,m_0^2\,\mathcal{I}_0.$$

or simply from

$$\mathcal{I}_0[q^2] = \mathcal{I}_0[\mu^2] + m_0^2 \, \mathcal{I}_0$$

1-Loop:

Dimensional-Recurrence: got it!

$$I_{n}^{D=6-2\epsilon} = \frac{1}{(n-5+2\epsilon)} \left[c_{n,0} \ I_{n}^{D=4-2\epsilon} - \sum_{i=1}^{n} c_{n,i} \ I_{n-1}^{(i),D=4-2\epsilon} \right]$$

$$I_{n-1}^{D=6-2\epsilon} = \frac{1}{(n-6+2\epsilon)} \left[c_{n-1,0} \ I_{n-1}^{D=4-2\epsilon} - \sum_{i=1}^{n-1} c_{n-1,i} \ I_{n-2}^{(i),D=4-2\epsilon} \right]$$

$$\dots = \dots$$

$$I_{2}^{D=6-2\epsilon} = \frac{1}{(-3+2\epsilon)} \left[c_{2,0} \ I_{2}^{D=4-2\epsilon} - \sum_{i=1}^{2} c_{2,i} \ I_{1}^{(i),D=4-2\epsilon} \right]$$

$$I_{1}^{D=6-2\epsilon} = \frac{1}{(-4+2\epsilon)} c_{1,0} \ I_{1}^{D=4-2\epsilon}$$

Dimensional Recurrence

@ integrand level:
what we can do with it?

1-Loop: IBP-id's from Dimensional-Recurrence

$$I_{n}^{D=6-2\epsilon} = \frac{1}{(n-5+2\epsilon)} \left[c_{n,0} \ I_{n}^{D=4-2\epsilon} - \sum_{i=1}^{n} c_{n,i} \ I_{n-1}^{(i),D=4-2\epsilon} \right]$$

$$I_{n-1}^{D=6-2\epsilon} = \frac{1}{(n-6+2\epsilon)} \left[c_{n-1,0} \ I_{n-1}^{D=4-2\epsilon} - \sum_{i=1}^{n-1} c_{n-1,i} \ I_{n-2}^{(i),D=4-2\epsilon} \right]$$

$$\dots = \dots$$

$$I_{2}^{D=6-2\epsilon} = \frac{1}{(-3+2\epsilon)} \left[c_{2,0} \ I_{2}^{D=4-2\epsilon} - \sum_{i=1}^{2} c_{2,i} \ I_{1}^{(i),D=4-2\epsilon} \right]$$

$$I_{1}^{D=6-2\epsilon} = \frac{1}{(-4+2\epsilon)} c_{1,0} \ I_{1}^{D=4-2\epsilon}$$

substitute them bottom-up!

Telescopic Identity

$$(n-1+D)I_n^{D+2} = \left[c_{n,0}I_n^D - \sum_{i=1}^n c'_{n,i} \ I_{n-1}^{(i),D+2} - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_{n-2}^{(i)D+2} - \dots - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_1^{(i),D+2}\right]$$

Sending $D \to D-2$

$$(n-3+D)I_n^D = \left[c_{n,0}I_n^{D-2} - \sum_{i=1}^n c'_{n,i} \ I_{n-1}^{(i),D} - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_{n-2}^{(i)D} - \dots - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_1^{(i),D}\right]$$

Telescopic Identity

$$(n-1+D)I_n^{D+2} = \left[c_{n,0}I_n^D - \sum_{i=1}^n c'_{n,i} \ I_{n-1}^{(i),D+2} - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_{n-2}^{(i)D+2} - \dots - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_1^{(i),D+2}\right]$$

Sending $D \to D-2$

$$(n-3+D)I_n^D = \left[c_n J_n^{D-2} - \sum_{i=1}^n c'_{n,i} I_{n-1}^{(i),D} - \sum_{i=1}^{n-1} c'_{n-1,i} I_{n-2}^{(i),D} - \dots - \sum_{i=1}^{n-1} c'_{n-1,i} I_1^{(i),D}\right]$$

iff $c_{n,0} = 0$

$$(n-3+D)I_n^D = \left[-\sum_{i=1}^n c'_{n,i} \ I_{n-1}^{(i),D} - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_{n-2}^{(i),D} - \dots - \sum_{i=1}^{n-1} c'_{n-1,i} \ I_1^{(i),D} \right]$$

this is an IBP-id: I_n^D is reducible in terms of lower-point MI's (subtopologies).

Proposition.

 $\forall n, c_{n,0}$ is found at the fist step of the integrand reduction, and it is not altered by the bottom-up recursive substitutions.

 \Rightarrow the integrand reduction can detect algebraically if I_n is MI or not.

Example: QED bubble 7.1

We consider a bubble \mathcal{I}_{01} with the denominators

$$D_0 = q^2,$$

$$D_1 = q^2 + 2(q \cdot p),$$

$$D_0 = q^2$$
, $D_1 = q^2 + 2(q \cdot p)$, (i.e. $m_0^2 = p^2 - m_1^2 = 0$).

$$(1-d)\,\mathcal{I}_{01}^{(d+2)} = \mathcal{I}_1^d.$$

$$-d\,\mathcal{I}_1^{(d+2)} = 2m_e^2\,\mathcal{I}_1^{(d)}$$

$$(1-d)\,\mathcal{I}_{01}^{(d+2)} = -\frac{1}{2\,m_1^2}\,d\,\mathcal{I}_1^{(d+2)},$$

shift
$$d \to d-2$$

$$(3-d)\mathcal{I}_{01}^d = \frac{1}{2m_1^2}(2-d)\mathcal{I}_1^d.$$

Example: QED bubble 7.1

We consider a bubble \mathcal{I}_{01} with the denominators

$$D_0 = q^2$$
, $D_1 = q^2 + 2(q \cdot p)$, (i.e. $m_0^2 = p^2 - m_1^2 = 0$).

$$(1-d)\,\mathcal{I}_{01}^{(d+2)} = \mathcal{I}_1^d.$$

Tadpole rec. rel.

$$-d\mathcal{I}_{1}^{(d+2)} = 2m_{e}^{2}\mathcal{I}_{1}^{(d)}$$

Telescopic Identity

$$-d\mathcal{I}_{1}^{(d+2)} = 2m_{e}^{2}\mathcal{I}_{1}^{(d)}$$

$$(1-d)\mathcal{I}_{01}^{(d+2)} = -\frac{1}{2m_{1}^{2}}d\mathcal{I}_{1}^{(d+2)},$$

shift $d \to d-2$

₽ IBP-id

$$(3-d)\mathcal{I}_{01}^d = \frac{1}{2m_1^2}(2-d)\mathcal{I}_1^d.$$

The reduction "knows" that the integral is reducible, at its first step

Example 2 (QED vertex)

We consider a triangle \mathcal{I}_{012} with kinematics corresponding to the QED vertex

$$D_0 = \bar{q}^2$$
, $D_1 = (\bar{q} + k_1)^2 - m_e^2$, $D_1 = (\bar{q} - k_2)^2 - m_e^2$,
with $m_0^2 = 0$, $k_1^2 = k_2^2 = m_1^2 = m_2^2 = m_e^2$, $(k_1 + k_2)^2 = s$.

$$(2-d)\,\mathcal{I}_{012}^{(d+2)} = \mathcal{I}_{12}^{(d)}$$

Bubble rec. rel.
$$(1-d)\,\mathcal{I}_{12}^{(d+2)} = \frac{4m_e^2 - s}{2}\mathcal{I}_{12}^{(d)} + \mathcal{I}_1^{(d)}$$

$$-d\,\mathcal{I}_1^{(d+2)} = 2m_e^2\,\mathcal{I}_1^{(d)}$$

$$(2-d)\mathcal{I}_{012}^{(d+2)} = \frac{2}{4m_e^2 - s} \left((1-d)\mathcal{I}_{12}^{(d+2)} + \frac{d}{2m_e^2}\mathcal{I}_1^{(d+2)} \right),$$

shift
$$d \to d-2$$

$$(4-d)\,\mathcal{I}_{012}^{(d)} = \frac{2}{4m_e^2 - s}\,\Big((3-d)\,\mathcal{I}_{12}^{(d)} + \frac{d-2}{2\,m_e^2}\,\mathcal{I}_1^{(d)}\Big).$$

Example 2 (QED vertex) 7.2

We consider a triangle \mathcal{I}_{012} with kinematics corresponding to the QED vertex

$$D_0 = \bar{q}^2,$$
 $D_1 = (\bar{q} + k_1)^2 - m_e^2,$ $D_1 = (\bar{q} - k_2)^2 - m_e^2,$
with $m_0^2 = 0,$ $k_1^2 = k_2^2 = m_1^2 = m_2^2 = m_e^2,$ $(k_1 + k_2)^2 = s.$

$$(2-d)\mathcal{I}_{012}^{(d+2)} = \mathcal{I}_{12}^{(d)}$$

$$(2-d)\mathcal{I}_{012}^{(d+2)} = \mathcal{I}_{12}^{(d)}$$

$$(1-d)\mathcal{I}_{12}^{(d+2)} = \frac{4m_e^2 - s}{2}\mathcal{I}_{12}^{(d)} + \mathcal{I}_1^{(d)}$$

$$-d\mathcal{I}_1^{(d+2)} = 2m_e^2\mathcal{I}_1^{(d)}$$

$$(2 - d) \mathcal{I}_{012}^{(d+2)} = \frac{2}{4m_e^2 - s} \left((1 - d) \mathcal{I}_{12}^{(d+2)} + \frac{d}{2m_e^2} \mathcal{I}_1^{(d+2)} \right),$$

shift
$$d \to d-2$$

$$(4-d)\mathcal{I}_{012}^{(d)} = \frac{2}{4m_e^2 - s} \left((3-d)\mathcal{I}_{12}^{(d)} + \frac{d-2}{2m_e^2}\mathcal{I}_1^{(d)} \right).$$

The reduction "knows" that the integral is reducible, at its first step

Integrand Reduction@Shift-invariant monomials = Dimensional Recurrence ~ IBP-id's

mechanism

• From $D \to D + 2$: integrand generation of $I_n^{6-2\epsilon}$:

$$I_n^{4-2\epsilon}[\mu^2] = (-\epsilon)I_n^{6-2\epsilon} , \qquad \frac{1}{(v_{\perp,1} \cdot v_{\perp,2})} I_n^{4-2\epsilon}[(v_{\perp,1} \cdot q)(v_{\perp,2} \cdot q)] = -\frac{1}{2} I_n^{6-2\epsilon}$$

(tadpole)
$$I_1^{4-2\epsilon}[q^2] = -2I_1^{6-2\epsilon}$$

reducibility power of IBP-id's within the integrand: accessed!

How about 2-Loop, 3-Loop,...

Finding out the integrands that control the dimension-shift...
...better if they are also loop-momentum shift invariant

Multi-Loop: IBP-id's from Dimensional-Recurrence Ossola, Peraro, & P.M.

$$\frac{1}{(p_i^2)^{\nu_i}} = \frac{1}{\Gamma(\nu_i)} \int_0^\infty dt_i \, t_i^{\nu_i - 1} \exp(-t_i p_i^2),$$

$$I^{D=4-2\epsilon}[1] = \frac{1}{(4\pi)^D} \prod_{i=1}^{7} \int_0^\infty dt_i \ \Delta^{-\frac{D}{2}} \ e^{-Q/\Delta}$$

Gram Determinant as Gaussian Integrals

$$\int \left(\prod_{i=1}^{l} \frac{d^{-2\epsilon} \vec{\mu_i}}{\pi^{-\epsilon}}\right) \exp \left(\sum_{i,j=1}^{l} A_{ij} \mu_{ij}\right) = \Delta^{\epsilon}.$$

$$\mu_{ij} \leftrightarrow \frac{\partial}{\partial A_{ij}}$$

Bern, De Freitas, Dixon Weinzierl

Bern, Dennen, Davies, Huang Badger, Frellesvig, Zhang

$$\frac{\Delta^{-\frac{D}{2}}}{\Delta} = \Delta^{-\frac{D+2}{2}}$$

₽1-Loop

$$\Delta = -\det(A_{11}) = -A_{11}$$

$$\Delta^{\epsilon} = \int \exp\left(\sum_{ij} A_{ij} \mu_{ij}\right) = \int \exp(A_{11} \mu_{11}), \qquad \frac{\partial}{\partial A_{11}} \Delta^{\epsilon} = -\epsilon \Delta^{\epsilon} = \int \mu_{11} \exp(...),$$

$$\frac{\partial}{\partial A_{11}} \Delta^{\epsilon} = -\epsilon \, \Delta^{\epsilon} = \int \mu_{11} \, \exp(\ldots),$$

$$\mathcal{I}[\mu_{11}] = -\epsilon \, \mathcal{I}^{(d+2)}.$$

2-Loop

$$\Delta = (-1)^2 \det \begin{pmatrix} A_{11} & A_{12} \\ A_{12} & A_{22} \end{pmatrix} = A_{11}A_{22} - A_{12}^2$$

$$\Delta^{\epsilon} = \int \exp\left(\sum_{ij} A_{ij}\mu_{ij}\right) = \int \exp(A_{11}\mu_{11} + A_{22}\mu_{22} + 2A_{12}\mu_{12}).$$

$$4\,\mathcal{I}[\mu_{11}\mu_{22}-\mu_{12}^2]=2\epsilon(1+2\epsilon)\mathcal{I}^{(d+2)}.$$
 Badger, Frellesvig, Zhang

₩3-Loop

$$\Delta = (-1)^3 \det \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{12} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$
$$= A_{13}^2 A_{22} - 2A_{12}A_{13}A_{23} + A_{11}A_{23}^2 + A_{12}^2 A_{33} - A_{11}A_{22}A_{33}.$$

$$\Delta^{\epsilon} = \int \exp(A_{11}\mu_{11} + A_{22}\mu_{33} + 2A_{12}\mu_{12} + 2A_{13}\mu_{13} + A_{23}\mu_{23})$$

$$8\mathcal{I}[\mu_{13}^2\mu_{22} - 2\mu_{12}\mu_{13}\mu_{23} + \mu_{11}\mu_{23}^2 + \mu_{12}^2\mu_{33} - \mu_{11}\mu_{22}\mu_{33}] = 4\epsilon(1+\epsilon)(1+2\epsilon)\mathcal{I}^{(d+2)}.$$

Multi-Loop Dimensional-Recurrence (Int'nd level)

Ossola, Peraro, & P.M.

Gram-Determinants/Schouten Polynomials Remiddi, Tancredi

$$S(D; a) = a^{2}$$

$$S(D; a, b) = a^{2}b^{2} - (a \cdot d)^{2}$$

$$S(D; a; b, c) = a^{2}b^{2}c^{2} - a^{2}(b \cdot c)^{2} - b^{2}(a \cdot c)^{2} - c^{2}(a \cdot b)^{2} + 2(a \cdot b)^{2}(b \cdot c)^{2}(c \cdot a)^{2}$$

$$\dots = \dots$$

(-2e)-Schouten Polynomials [loops dependent]

$$S(-2\epsilon; \mu_1) = \mu_{11}$$

$$S(-2\epsilon; \mu_1, \mu_2) = \mu_{11}\mu_{22} - \mu_{12}^2$$

$$S(-2\epsilon; \mu_1, \mu_2, \mu_3) = \mu_{11}\mu_{22}\mu_{33} - \mu_{11}\mu_{23}^2 - \mu_{22}\mu_{13}^2 - \mu_{33}\mu_{12}^2 + 2\mu_{12}^2\mu_{13}^2\mu_{23}^2$$

$$\dots = \dots$$

(4D)-Schouten Polynomials [loops & legs dependent]

$$S(4; q_1)$$
, $S(4; q_1, p_1)$, ..., $S(4; q_1, p_1, ..., p_{n-1})$,
 $S(4; q_1, q_2)$, $S(4; q_1, q_2, p_1)$, ..., $S(4; q_1, q_2, p_1, ..., p_{n-1})$,
 $S(4; q_1, q_2, q_3)$, $S(4; q_1, q_2, q_3, p_1)$, ..., $S(4; q_1, q_2, q_3, p_1, ..., p_{n-1})$,

Multi-Loop Dimensional-Recurrence (Int'nd level)

Ossola, Peraro, & P.M.

Integrand decomposition

$$S(-2\epsilon; \dots, \mu_i, \dots) = a_1 S(4; \dots, q_i, \dots p_j, \dots) + a_0 + D_i's + \text{spurious}$$

Integration

$$I_n^D[S(-2\epsilon;\ldots)] = c(\epsilon) I_n^{D+2}, \qquad I_n^D[S(4;\ldots)] = c_4 I_n^{D+2},$$

Dimensional Recurrence

$$(c(\epsilon) - c_4 a_1)I_n^{D+2} = a_0 I_n^D + \text{subdiagrams}$$

Proposition.

- @ All-Loop: The Dimensional-Recurrence for I_n^D is generated from the integrand relations between $S(-2\epsilon; \mu_{ij})$, $S(4; q_{ij}, p_{ij})$ and D_i 's
- these relations capture the reducibility power of IBP-id's

$$\mathcal{I}_{123}[\mathcal{N}] = \frac{\mathcal{N}}{D_1 D_2 D_3}$$

$$D_1 = \bar{q}_1^2 - m^2 = q_1^2 - m^2 - \mu_{11}$$

$$D_2 = \bar{q}_2^2 - m^2 = q_2^2 - m^2 - \mu_{22}$$

$$D_3 = (\bar{q}_1 - \bar{q}_2)^2 = (q_1 - q_2)^2 - \mu_{11} - \mu_{22} + 2\mu_{12},$$

$$q_1^2 q_2^2 - (q_1 \cdot q_2)^2 = (\mu_{11} \mu_{22} - \mu_{12}^2) + m^2 (\mu_1 - \mu_2)^2 + \frac{m^2}{2} D_3 + \text{spurious}$$

$$\mathcal{I}_{123}[q_1^2q_2^2 - (q_1 \cdot q_2)^2] = \mathcal{I}_{123}[S(4; q_1, q_2)] = 3 \mathcal{I}_{123}^{d+2}$$

$$\mathcal{I}_{123}[\mu_{11}\mu_{22} - \mu_{12}^2] = \mathcal{I}_{123}[S(-2\epsilon; \mu_1, \mu_2)] = \frac{\epsilon}{2}(1 + 2\epsilon) \mathcal{I}_{123}^{d+2}$$

$$\mathcal{I}_{123}[(\mu_1 - \mu_2)^2] = \frac{d-4}{d}\mathcal{I}_{12}$$

Dimensional Recurrence

$$-\frac{1}{4}(d-1)(d-8)\ \mathcal{I}_{123}^{d+2} = \frac{4m^2}{d}\mathcal{I}_{12}^d$$

$$d^2 \mathcal{I}_{12}^{(d+2)} = 4m^4 \mathcal{I}_{12}^{(d)},$$

$$\mathcal{I}_{123}^{(d+2)} = \frac{d}{2m^2(d-1)} \mathcal{I}_{12}^{(d+2)}.$$

$$d \rightarrow d - 2$$

$$\mathcal{I}_{123}^d = \frac{d-2}{2m^2(d-3)}\mathcal{I}_{12}^d.$$

$$\mathcal{I}_{123}[\mathcal{N}] = \frac{\mathcal{N}}{D_1 D_2 D_3}$$

$$D_1 = \bar{q}_1^2 - m^2 = q_1^2 - m^2 - \mu_{11}$$

$$D_2 = \bar{q}_2^2 - m^2 = q_2^2 - m^2 - \mu_{22}$$

$$D_3 = (\bar{q}_1 - \bar{q}_2)^2 = (q_1 - q_2)^2 - \mu_{11} - \mu_{22} + 2\mu_{12},$$

Integrand decomposition

$$q_1^2 q_2^2 - (q_1 \cdot q_2)^2 = (\mu_{11} \mu_{22} - \mu_{12}^2) + m^2 (\mu_1 - \mu_2)^2 + \frac{m^2}{2} D_3 + \text{spurious}$$

Integration
$$\mathcal{I}_{123}[q_1^2q_2^2-(q_1\cdot q_2)^2]=\mathcal{I}_{123}[S(4;q_1,q_2)]=3~\mathcal{I}_{123}^{d+2}$$

$$\mathcal{I}_{123}[\mu_{11}\mu_{22} - \mu_{12}^2] = \mathcal{I}_{123}[S(-2\epsilon; \mu_1, \mu_2)] = \frac{\epsilon}{2}(1 + 2\epsilon) \mathcal{I}_{123}^{d+2}$$

$$\mathcal{I}_{123}[(\mu_1 - \mu_2)^2] = \frac{d-4}{d}\mathcal{I}_{12}$$

Dimensional Recurrence

$$-\frac{1}{4}(d-1)(d-8) \mathcal{I}_{123}^{d+2} = \frac{4m^2}{d} \mathcal{I}_{12}^d$$

$$d^2 \mathcal{I}_{12}^{(d+2)} = 4m^4 \mathcal{I}_{12}^{(d)},$$

$$\mathcal{I}_{123}^{(d+2)} = \frac{d}{2m^2(d-1)} \mathcal{I}_{12}^{(d+2)}.$$

$$d \rightarrow d - 2$$

$$d \to d - 2$$
 $\mathcal{I}_{123}^d = \frac{d - 2}{2m^2(d - 3)} \mathcal{I}_{12}^d.$

The reduction "knows" that the integral is reducible, at its first step

D-Shifting Operator

Tarasov; Lee; Ossola, Peraro, Remiddi, Schubert, Tancredi, & *P.M.*

L-loops, *m*-legs, *n*-denominators, q_i 's loop momenta, p_i 's external momenta; $\vec{q} \equiv \{q_1, \dots, q_L\}, \ \vec{p} \equiv \{p_1, \dots, p_{m-1}\}, \ \vec{a} \equiv \{a_1, \dots, a_n\}$

$$I_{m,n}^{D}[f(q_i; p_i); \vec{a}] \equiv \int d^D q_1 \cdots d^D q_L \frac{f(q_i; p_i)}{D_1^{a_1} \cdots D_n^{a_n}}$$

$$I_{m,n}^{D}[S(D; \vec{q}, \vec{p})f(q_i; p_i); \vec{a}] \equiv \int d^D q_1 \cdots d^D q_L \frac{S(D; \vec{q}, \vec{p}) f(q_i; p_i)}{D_1^{a_1} \cdots D_n^{a_n}}$$

$$= \operatorname{coeff} \times I_{m,n}^{D+2}[f(q_i; p_i); \vec{a}]$$

Hence $S(D; \vec{q}, \vec{p})$ plays the role of the \mathbf{D}^+ operator, raising $D \to D + 2$.

- Easy to implement: just a polynomial in terms of of q's and p's (Gram Determinant)
- S is shift-invariant under redefinition of loop momentum (preserving mom. cons.)

Geometry behind Master Integrals

Ossola, Peraro, Schubert & P.M.

(towards a) Criterion for Master Integrals

MI's are related to the *constant term* of the *Gram Determinant* on the *maximal cut* of the the considered topology (where all denominators are on-shell)

[Absence of] constant term <==> [Not] Master Integral

Geometry behind Master Integrals

Ossola, Peraro, Schubert & P.M.

(towards a) Criterion for Master Integrals

MI's are related to the *constant term* of the *Gram Determinant* on the *maximal cut* of the the considered topology (where all denominators are on-shell)

[Absence of] constant term <==> [Not] Master Integral

Examples of Reducible Integrals

$$p_{12}$$
 p_{12}
 p_{12}
 p_{12}
 p_{12}
 p_{12}
 p_{12}
 p_{12}
 p_{13}
 p_{14}
 p_{15}
 p_{15}

Conclusions

a new tool for the Decomposition of Scattering Amplitudes

- Multivariate Polynomial Division
 - one ingredient: Feynman denominator
 - one operation: partial fractioning
- Dimensional Recurrence at the integrand level
- embedding: Unitarity, Factorization, and loop-momentum shift invariance
- Minimal set of MI's

key ideas

- D-shifted Master Integrals
- Schouten Polynomials/Gram-determinants in 4- and (-2e)-dimensions

results

- reducibility criterion: purely algebraic procedure to detect MI's
- A new, simple operator for Dimension-raising: Schouten Polynomials

geometry beneath

- Algebraic Geometry and Theory of Invariants
- Gram-determinants ~ (iper)Volumes of polyhedra (<= Amplituhedron?)

EXTRA Slides

At any loop ℓ , loops we define maximum cut as the set of vanishing denominators

$$D_0 = D_1 = \ldots = 0$$

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number n_s of solutions, each with multiplicity one.

Then,

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial paramatrised by n_s coefficients, which admits a univariate representation of degree $(n_s - 1)$.

Examples of Maximum-Cuts

diagram	Δ	n_s	diagram	Δ	n_s
\	c_0	1	Д	$c_0 + c_1 z$	2
	$\sum_{i=0}^{3} c_i z^i$	4	\	$\sum_{i=0}^{3} c_i z^i$	4
	$\sum_{i=0}^{7} c_i z^i$	8		$\sum_{i=0}^{7} c_i z^i$	8

Residues

$$\Delta_{i_1 i_2 i_3 i_4 i_5} = c_0$$

$$\Delta_{i_1 i_2 i_3 i_4} = c_0 + c_1 x_4 + \mu^2 (c_2 + c_3 x_4 + \mu^2 c_4)$$

$$\Delta_{i_1 i_2 i_3} = c_0 + c_1 x_3 + c_2 x_3^2 + c_3 x_3^3 + c_4 x_4 + c_5 x_4^2 + c_6 x_4^3 + \mu^2 (c_7 + c_8 x_3 + c_9 x_4)$$

$$\Delta_{i_1 i_2} = c_0 + c_1 x_2 + c_2 x_3 + c_3 x_4 + c_4 x_2^2 + c_5 x_3^2 + c_6 x_4^2 + c_7 x_2 x_3 + c_9 x_2 x_4 + c_9 \mu^2$$

$$\Delta_{i_1} = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$$

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{2,0} + c_{2,9} + c_{2,9} + c_{1,0} + c_{1,0}$$

Residues

Samurai

Ossola, Reiter, Tramontano, & P.M.

Ninja

Mirabella, Peraro, & **P.M.**

$$\Delta_{i_1 i_2 i_3 i_4 i_5} = c_0 \mu^2$$
Mirabella,
$$\Delta_{i_1 i_2 i_3 i_4} = c_0 + c_1 x_4 + \mu^2 (c_2 + c_3 x_4 + \mu^2 c_4)$$

$$\Delta_{i_1 i_2 i_3} = c_0 + c_1 x_3 + c_2 x_3^2 + c_3 x_3^3 + c_4 x_4 + c_5 x_4^2 + c_6 x_4^3 + \mu^2 (c_7 + c_8 x_3 + c_9 x_4)$$

$$\Delta_{i_1 i_2} = c_0 + c_1 x_2 + c_2 x_3 + c_3 x_4 + c_4 x_2^2 + c_5 x_3^2 + c_6 x_4^2 + c_7 x_2 x_3 + c_9 x_2 x_4 + c_9 \mu^2$$

$$\Delta_{i_1} = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$$

$$\mathcal{A}_{n}^{\text{one-loop}} = c_{5,0} + c_{4,0} + c_{4,4} + c_{4,4} + c_{3,0} + c_{3,7} + c_{2,0} + c_{2,9} + c_{2,9} + c_{1,0}$$

• PV decomposition

$$I_n^{D=4-2\epsilon}[\bar{q}^{\mu}\bar{q}^{\nu}] = A_{2,0} \ \bar{g}^{\mu\nu} + \sum_{ij} A_{2,ij} \ p_i^{\mu} p_j^{\nu}$$

Contracting by $g_{[-2\epsilon]}^{\mu\nu}$:

$$I_n^{4-2\epsilon}[\mu^2] = A_{2,0}(2\epsilon) = (-\epsilon)I_n^{6-2\epsilon} \qquad \Rightarrow \qquad A_{2,0} = -\frac{1}{2}I_n^{6-2\epsilon}$$

Contracting by $v_{\perp,1}^{\mu}v_{\perp,2}^{\nu}$ with $(v_{\perp,i}\cdot p_j=0)$:

$$I_n^{4-2\epsilon}[(v_{\perp,1}\cdot q)(v_{\perp,2}\cdot q)] = A_{2,0}(v_{\perp,1}\cdot v_{\perp,2})$$

$$\Rightarrow \frac{1}{(v_{\perp,1} \cdot v_{\perp,2})} I_n^{4-2\epsilon} [(v_{\perp,1} \cdot q)(v_{\perp,2} \cdot q)] = -\frac{1}{2} I_n^{6-2\epsilon}$$

• From $D \to D + 2$: integrand generation of $I_n^{6-2\epsilon}$:

$$I_n^{4-2\epsilon}[\mu^2] = (-\epsilon)I_n^{6-2\epsilon} , \qquad \frac{1}{(v_{\perp,1} \cdot v_{\perp,2})} I_n^{4-2\epsilon}[(v_{\perp,1} \cdot q)(v_{\perp,2} \cdot q)] = -\frac{1}{2} I_n^{6-2\epsilon}$$

(tadpole)
$$I_1^{4-2\epsilon}[q^2] = -2I_1^{6-2\epsilon}$$

Example of Reducible Integral


```
Schouten =
           + D6 * (1/8*mu12*mH^4 + 1/8*q1.e3*q2.e4*mH^4 + 1/8*q1.e4*q2.e3*mH^4)
           + D4 * (1/4*q1.e3*q2.e4*q2.k1*mH^2 + 1/4*q1.e4*q2.e3*q2.k1*mH^2 + 1/4*q1.e4*q2.e3*q2.e3*q2.k1*mH^2 + 1/4*q1.e4*q2.e3*q2.e3*q2.k1*mH^2 + 1/4*q1.e4*q2.e3*q2.e3*q2.k1*mH^2 + 1/4*q1.e4*q2.e3*q2.e3*q2.k1*mH^2 + 1/4*q1.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e3*q2.e
              q2.k1*mu12*mH^2)
           + D3 * ( - 1/8*mu12*mH^4 - 1/4*q1.e3*q2.e4*q2.k1*mH^2 - 1/8*q1.e3*
              q2.e4*mH^4 - 1/4*q1.e4*q2.e3*q2.k1*mH^2 - 1/8*q1.e4*q2.e3*mH^4 - 1/4*
              q2.k1*mu12*mH^2
           + D3*D5*(1/8*mu12*mH^2 + 1/8*q1.e3*q2.e4*mH^2 + 1/8*q1.e4*q2.e3*mH^2
               + q1.k1*q2.k1 + 1/2*q2.k1*mH^2
           + D3*D4*D5*(-1/2*q2.k1)
           + D2 * (-1/8*q2.k2*mH^4)
           + D2*D6 * ( - 1/16*mH^4)
           + D2*D5 * ( 1/16*mH^4)
           + D2*D4*(-1/8*q2.k1*mH^2)
           + D2*D3 * ( - 3/16*mH^4 - 1/8*mu12*mH^2 - 1/8*q1.e3*q2.e4*mH^2 - 1/8*
              q1.e4*q2.e3*mH^2 - q1.k1*q2.k1 - 1/2*q1.k1*mH^2 - 3/8*q2.k1*mH^2 - 1/
              8*q2.k2*mH^2)
           + D2*D3*D4* (1/4*mH^2 + 1/2*q2.k1)
           + D1*D5 * ( - 1/8*mu12*mH^2 - 1/8*q1.e3*q2.e4*mH^2 - 1/8*q1.e4*q2.e3*
             mH^2
           + D1*D4*D5 * ( 1/2*q2.k1 )
           + D1*D2*(1/8*mu12*mH^2 + 1/8*q1.e3*q2.e4*mH^2 + 1/8*q1.e4*q2.e3*mH^2
               + 1/8*q2.k2*mH^2
           + D1*D2*D4*(-1/4*mH^2-1/2*q2.k1);
```